VICTRON BLUESOLAR MPPT 75/15

VICTRON BLUESOLAR MPPT 75/15

VICTRON BLUESOLAR MPPT REGULATOR 12/24V 75V/15A


Brand: Victron

Reference No. SCC010015050R

0

126.00Incl

114.55Excl
Add to Cart

Victron Bluesolar MPPT:


A solar charger gathers energy from your solar panels, and stores it in your batteries. Using the latest, fastest technology, BlueSolar maximises this energy-harvest, driving it intelligently to achieve full charge in the shortest possible time. BlueSolar maintains battery health, extending its life.

PWM and MPPT charge controllers are both widely used to charge batteries with solar power. The PWM controller is in essence a switch that connects a solar array to the battery. The result is that the voltage of the array will be pulled down to near that of the battery. The MPPT controller is more sophisticated (and more expensive): it will adjust its input voltage to harvest the maximum power from the solar array and then transform this power to supply the varying voltage requirement of the battery plus load. Thus, it essentially decouples the array and battery voltages so that there can be, for example, a 12 volt battery on one side of the MPPT charge controller and panels wired in series to produce 36 volts on the other.

It is generally accepted that MPPT will outperform PWM in a cold to temperate climate, while both controllers will show approximately the same performance in a subtropical to tropical climate. Besides performing the function of a basic controller, an MPPT controller also includes a DC to DC voltage converter, converting the voltage of the array to that required by the batteries, with very little loss of power.

An MPPT controller attempts to harvest power from the array near its Maximum Power Point, whilst supplying the varying voltage requirements of the battery plus load. Thus, it essentially decouples the array and battery voltages, so that there can be a 12 volt battery on one side of the MPPT charge controller and two 12 Vpanels wired in series to produce 36 volts on the other. If connected to a PV array with a substantially higher nominal voltage than the battery voltage, an MPPT controller will therefore provide charge current even at very high cell temperatures or in low irradiance conditions when a PWM controller would not help much.

As array size increases, both cabling cross sectional area and cable length will increase. The option to wire more panels in series and thereby decrease current, is a compelling reason to install an MPPT controller as soon as the array power exceeds a few hundred Watts (12 V battery), or several 100 Watts (24 V or 48 V battery)


Features:

Ultra-fast Maximum Power Point Tracking (MPPT)- Especially in case of a clouded sky, when light intensity is changing continuously, an ultra-fast MPPT controller will improve energy harvest by up to 30% compared to PWM charge controllers and by up to 10% compared to slower MPPT controllers.

Load output- Over-discharge of the battery can be prevented by connecting all loads to the load output. The load output will disconnect the load when the battery has been discharged to a pre-set voltage. Alternatively, an intelligent battery management algorithm can be chosen: see Battery Life. The load output is short circuit proof. Some loads (especially inverters) can best be connected directly to the battery, and the inverter remote control connected to the load output. A special interface cable may be needed, please see the manual.

Battery Life: intelligent battery management- When a solar charge controller is not able to recharge the battery to its full capacity within one day, the result is often that the battery will continually be cycled between a ‘partially charged’ state and the ‘end of discharge’ state. This mode of operation (no regular full recharge) will destroy a lead-acid battery within weeks or months. The Battery Life algorithm will monitor the state of charge of the battery and, if needed, day by day slightly increase the load disconnect level (i.e. disconnect the load earlier) until the harvested solar energy is sufficient to recharge the battery to nearly the full 100%. From that point onwards the load disconnect level will be modulated so that a nearly 100% recharge is achieved about once every week.

Programmable battery charge algorithm- See the software section on our website for details

Day/night timing and light dimming option- See the software section on our website for details

Programming, real-time data and history display options- Color Control GX or other GX devices: see the Venus documents on our website. A smartphone or other Bluetooth-enabled device: VE.Direct Bluetooth Smart dongle needed.

 

BlueSolar Charge Controller

MPPT 75/10

MPPT 75/15

MPPT 100/15

Battery voltage

12/24V Auto Select

Rated charge current

10A

15A

15A

Nominal PV power, 12V 1a,b)

145W

220W

220W

Nominal PV power, 24V 1a,b)

290W

440W

440W

Max. PV short circuit current 2)

10A

15A

15A

Automatic load disconnect

Yes, maximum load 15A

Maximum PV open circuit voltage

75V

100V

Peak efficiency

98%

Self-consumption

12V: 20 mA 24V: 10 mA

Charge voltage 'absorption'

14,4V / 28,8V (adjustable)

Charge voltage 'float'

13,8V / 27,6V (adjustable)

Charge algorithm

multi-stage adaptive

Temperature compensation

-16 mV / °C resp. -32 mV / °C

Continuous/peak load current

15A / 50A

Low voltage load disconnect

11,1V / 22,2V or 11,8V / 23,6V

or Battery Life algorithm

Low voltage load reconnect

13,1V/26,2Vor14V/28V

or Battery Lifealgorithm

Protection

Battery reverse polarity (fuse)

Output short circuit / Over temperature

Operating temperature

-30 to +60°C (full rated output up to 40°C)

Humidity

95%, non-condensing

Data communication port

VE.Direct

See the data communication white paper on our website

ENCLOSURE

Colour

Blue (RAL 5012)

Power terminals

6 mm² / AWG10

Protection category

IP43 (electronic components), IP22 (connection area)

Weight

0,5 kg

Dimensions (h x w x d)

100 x 113 x 40 mm

STANDARDS

Safety

EN/IEC 62109-1, UL 1741, CSA C22.2

1a) If more PV power is connected, the controller will limit input power. 1b) PV voltage must exceed Vbat + 5V for the controller to start.

Thereafter minimum PV voltage is Vbat + 1V

2) A PV array with a higher short circuit current may damage the controller.

Spec Sheet-


Manual-


MPPT Overview-


Inverting Remote On-Off Cable-


Adding Dimming Functionality to Solar Lighting System-


Dimensions-